1,003 research outputs found

    Space Station Freedom coupling tasks: An evaluation of their space operational compatibility

    Get PDF
    The development of the Space Station Freedom tasks that are compatible with both telerobotic as well as extravehicular activity is a necessary redundancy in order to insure successful day to day operation. One task to be routinely performed aboard Freedom will be the changeout of various quick disconnect fluid connectors. In an attempt to resolve these potentially contradictory issues of compatibility, mock-ups of couplings suitable to both extravehicular as well as telerobotic activity were designed and built. An evaluation performed at the Remote Operator Interaction Laboratory at NASA's Johnson Space Center is discussed, which assessed the prototype couplings as well as three standard coupling designs. Data collected during manual and telerobotic manipulation of the couplings indicated that the custom coupling was in fact shown to be faster to operate and generally preferred over the standard coupling designs

    A human factors evaluation of the robotic interface for Space Station Freedom orbital replaceable units

    Get PDF
    An orbital replaceable unit (ORU) is often defined as any orbital unit aboard Space Station with a wearout life of less than 30 years. The capability of successful changeout of these units by remote manipulation is critical to the ORU to telerobot interface design. A human factors evaluation of the selected interface showed certain inadequacies of the alignment target concept that was part of the interface package. Alternative target concepts which addressed these inadequacies were developed and are presented. Recommendations will be incorporated into NASA requirements documents which ORU suppliers and manufacturers must then build to

    An experimental test of all theories with predictive power beyond quantum theory

    Full text link
    According to quantum theory, the outcomes of future measurements cannot (in general) be predicted with certainty. In some cases, even with a complete physical description of the system to be measured and the measurement apparatus, the outcomes of certain measurements are completely random. This raises the question, originating in the paper by Einstein, Podolsky and Rosen, of whether quantum mechanics is the optimal way to predict measurement outcomes. Established arguments and experimental tests exclude a few specific alternative models. Here, we provide a complete answer to the above question, refuting any alternative theory with significantly more predictive power than quantum theory. More precisely, we perform various measurements on distant entangled photons, and, under the assumption that these measurements are chosen freely, we give an upper bound on how well any alternative theory could predict their outcomes. In particular, in the case where quantum mechanics predicts two equally likely outcomes, our results are incompatible with any theory in which the probability of a prediction is increased by more than ~0.19. Hence, we can immediately refute any already considered or yet-to-be-proposed alternative model with more predictive power than this.Comment: 13 pages, 4 figure

    Evaluation of restraint system concepts for the Japanese Experiment Module flight demonstration

    Get PDF
    The current International Space Station configuration includes a Japanese Experiment Module which relies on a large manipulator and a smaller dexterous manipulator to operate outside the pressurized environment of the experiment module. The module's flight demonstration is a payload that will be mounted in the aft flight deck on STS-87 to evaluate a prototype of the dexterous manipulator. Since the payload operations entail two 8-hour scenarios on consecutive days, adequate operator restraint at the workstation will be critical to the perceived success or failure of the payload. Simulations in reduced gravity environment on the KC-135A were the only way to evaluate the restraint systems and workstation configuration. Two astronaut and two non-astronaut operators evaluated the Advanced Lower Body Extremities Restraint Test and a foot loop restraint system by performing representative tasks at the workstation in each of the two restraint systems; at the end of each flight they gave their impressions of each system and the workstation. Results indicated that access to the workstation switch panels was difficult and manipulation of the hand controllers forced operators too low for optimal viewing of the aft flight deck monitors. The workstation panel should be angled for better visibility, and infrequently used switches should be on the aft flight deck panel. Pitch angle and placement of the hand controllers should optimize the operator's eye position with respect to the monitors. The lower body restraint was preferred over the foot loops because it allowed operators to maintain a more relaxed posture during long-duration tasks, its height adjustability allowed better viewing of aft flight deck monitors, and it provided better restraint for reacting forces imparted on the operator at the workstation. The foot loops provide adequate restraint for the flight demonstration tasks identified. Since results will impact the design of the workstation, both restraints should be flown and used during operation of the flight demonstration payload to evaluate the effect of restraint during long-duration tasks

    Demonstration of radio-over-fiber-supported 60 GHz MIMO using separate antenna-pair processing

    Get PDF
    Coverage at millimeter-wave (mmW) frequencies is a constraining bottleneck. Spatial diversity and spatial multiplexing multiple-input multiple-output (MIMO) improve performance over a spread of user locations and these can benefit from wider antenna spacing. Radio-over-Fiber (RoF) transport provides flexibility in deploying a number of widely-spaced Remote Antenna Units (RAUs) connected to the same Central Unit (CU). Hence, mmW systems with an integrated analog RoF fronthaul are strong candidates for use in future 5G networks. An approach to measure channel coefficients individually for MIMO processing has been demonstrated in a RoF transported 2×2 MIMO system at 60 GHz. Experimental results verify this approach through real 2×2 experiments

    A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice

    Get PDF
    Traumatic brain injury (TBI) often involves multitrauma in which concurrent extracranial injury occurs. We previously demonstrated that a long bone fracture exacerbates neuroinflammation and functional outcomes in mice given a TBI. Whether other forms of concomitant peripheral trauma that are common in the TBI setting, such as skeletal muscle injury, have similar effects is unknown. As such, here we developed a novel mouse multitrauma model by combining a closed-skull TBI with a cardiotoxin (CTX)-induced muscle injury to investigate whether muscle injury affects TBI outcomes. Adult male mice were assigned to four groups: sham-TBI + sham-muscle injury (SHAM); sham-TBI + CTX-muscle injury (CTX); TBI + sham-muscle injury (TBI); TBI + CTX-muscle injury (MULTI). Some mice were euthanized at 24 h post-injury to assess neuroinflammation and cerebral edema. The remaining mice underwent behavioral testing after a 30-day recovery period, and were euthanized at 35 days post-injury for post-mortem analysis. At 24 h post-injury, both TBI and MULTI mice had elevated edema, increased expression of GFAP (i.e., a marker for reactive astrocytes), and increased mRNA levels of inflammatory chemokines. There was also an effect of injury on cytokine levels at 35 days post-injury. However, the TBI and MULTI mice did not significantly differ on any of the measures assessed. These initial findings suggest that a concomitant muscle injury does not significantly affect preclinical TBI outcomes. Future studies should investigate the combination of different injury models, additional outcomes, and other post-injury time points

    Reef fishes at all trophic levels respond positively to effective marine protected areas

    Get PDF
    Marine Protected Areas (MPAs) offer a unique opportunity to test the assumption that fishing pressure affects some trophic groups more than others. Removal of larger predators through fishing is often suggested to have positive flow-on effects for some lower trophic groups, in which case protection from fishing should result in suppression of lower trophic groups as predator populations recover. We tested this by assessing differences in the trophic structure of reef fish communities associated with 79 MPAs and open-access sites worldwide, using a standardised quantitative dataset on reef fish community structure. The biomass of all major trophic groups (higher carnivores, benthic carnivores, planktivores and herbivores) was significantly greater (by 40% - 200%) in effective no-take MPAs relative to fished open-access areas. This effect was most pronounced for individuals in large size classes, but with no size class of any trophic group showing signs of depressed biomass in MPAs, as predicted from higher predator abundance. Thus, greater biomass in effective MPAs implies that exploitation on shallow rocky and coral reefs negatively affects biomass of all fish trophic groups and size classes. These direct effects of fishing on trophic structure appear stronger than any top down effects on lower trophic levels that would be imposed by intact predator populations. We propose that exploitation affects fish assemblages at all trophic levels, and that local ecosystem function is generally modified by fishing

    Evidence That Ca2+ within the Microdomain of the L-Type Voltage Gated Ca2+ Channel Activates ERK in MIN6 Cells in Response to Glucagon-Like Peptide-1

    Get PDF
    Glucagon like peptide-1 (GLP-1) is released from intestinal L-cells in response to nutrient ingestion and acts upon pancreatic β-cells potentiating glucose-stimulated insulin secretion and stimulating β-cell proliferation, differentiation, survival and gene transcription. These effects are mediated through the activation of multiple signal transduction pathways including the extracellular regulated kinase (ERK) pathway. We have previously reported that GLP-1 activates ERK through a mechanism dependent upon the influx of extracellular Ca2+ through L-type voltage gated Ca2+ channels (VGCC). However, the mechanism by which L-type VGCCs couple to the ERK signalling pathway in pancreatic β-cells is poorly understood. In this report, we characterise the relationship between L-type VGCC mediated changes in intracellular Ca2+ concentration ([Ca2+]i) and the activation of ERK, and demonstrate that the sustained activation of ERK (up to 30 min) in response to GLP-1 requires the continual activation of the L-type VGCC yet does not require a sustained increase in global [Ca2+]i or Ca2+ efflux from the endoplasmic reticulum. Moreover, sustained elevation of [Ca2+]i induced by ionomycin is insufficient to stimulate the prolonged activation of ERK. Using the cell permeant Ca2+ chelators, EGTA-AM and BAPTA-AM, to determine the spatial dynamics of L-type VGCC-dependent Ca2+ signalling to ERK, we provide evidence that a sustained increase in Ca2+ within the microdomain of the L-type VGCC is sufficient for signalling to ERK and that this plays an important role in GLP-1- stimulated ERK activation

    Towards an Economy of Higher Education

    Get PDF
    This paper draws a distinction between ways thinking and acting, and hence of policy and practice in higher education, in terms of different kinds of economy: economies of exchange and economies of excess. Crucial features of economies of exchange are outlined and their presence in prevailing conceptions of teaching and learning is illustrated. These are contrasted with other possible forms of practice, which in turn bring to light the nature of an economy of excess. In more philosophical terms, and to expand on the picture, economies of excess are elaborated with reference, first, to the understanding of alterity in the work of Emmanuel Levinas and, second, to the idea of Dionysian intensity that is to be found in Nietzsche. In the light of critical comment on some current directions in policy and practice, the implications of these ways of thinking for the administrator, the teacher and the student in higher education are explored
    corecore